The Coefficient of Prediction for Model Specification
نویسندگان
چکیده
The coefficient of prediction 2 j P is derived from the PRESS (prediction sum of squares) statistic just as 2 j R is derived from SSE, the error sum of squares. While 2 j R measures quality of fit, 2 j P measures quality of point predictions. Unlike SSE and PRESS, 2 j R and 2 j P are bounded, relative measures ideally suited for statistical modeling. This paper describes the limits, properties, how 2 j P differs from other criteria, and the rationale for its importance. This knowledge enhances one’s understanding of what constitutes properly specified statistical models. An example illustrates the behavior and practical applications of 2 j P in model specification analysis.
منابع مشابه
Functional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملApplication of Genetic Programming to Modeling and Prediction of Activity Coefficient Ratio of Electrolytes in Aqueous Electrolyte Solution Containing Amino Acids
Genetic programming (GP) is one of the computer algorithms in the family of evolutionary-computational methods, which have been shown to provide reliable solutions to complex optimization problems. The genetic programming under discussion in this work relies on tree-like building blocks, and thus supports process modeling with varying structure. In this paper the systems containing amino ac...
متن کاملA Simplified Perturbation Model for Prediction of Mean Ionic Activity Coefficient in Aqueous Electrolyte Solution
متن کامل
Application of Genetic Algorithm Based Support Vector Machine Model in Second Virial Coefficient Prediction of Pure Compounds
In this work, a Genetic Algorithm boosted Least Square Support Vector Machine model by a set of linear equations instead of a quadratic program, which is improved version of Support Vector Machine model, was used for estimation of 98 pure compounds second virial coefficient. Compounds were classified to the different groups. Finest parameters were obtained by Genetic Algorithm method ...
متن کاملBayes, E-Bayes and Robust Bayes Premium Estimation and Prediction under the Squared Log Error Loss Function
In risk analysis based on Bayesian framework, premium calculation requires specification of a prior distribution for the risk parameter in the heterogeneous portfolio. When the prior knowledge is vague, the E-Bayesian and robust Bayesian analysis can be used to handle the uncertainty in specifying the prior distribution by considering a class of priors instead of a single prior. In th...
متن کاملA Novel QSAR Model for the Evaluation and Prediction of (E)-N’-Benzylideneisonicotinohydrazide Derivatives as the Potent Anti-mycobacterium Tuberculosis Antibodies Using Genetic Function Approach
Abstract A dataset of (E)-N’-benzylideneisonicotinohydrazide derivatives as a potent anti-mycobacterium tuberculosis has been investigated utilizing Quantitative Structure-Activity Relationship (QSAR) techniques. Genetic Function Algorithm (GFA) and Multiple Linear Regression Analysis (MLRA) were used to select the descriptors and to generate the correlation QSAR models that relate the Mi...
متن کامل